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bstract

Finite element method (FEM) is employed to simulate the transient heat conduction during the collision between spherical particles. The total
ollision time is divided into many small time steps. At each time step, the contact area is evaluated by the Hertz’s theory of elastic collision and
ased on this information, a grid system is generated for FEM computation to determine the temperature distribution in a particle and the heat
xchange between particles. The total heat exchange is the sum of the heat exchange at all time steps. The FEM approach and computer code are
erified by the good agreement between the numerical and analytical solutions for a well-established case. It is then used to simulate the transient
eat transfer process during particle collision. It is shown that the heat exchange is affected by variables related to collision conditions and material

roperties. The results are qualitatively consistent with those obtained analytically based on the semi-infinite-media assumption. However, the
nalytical model overestimates the heat exchange, particularly when the Fourier number is high. A modified equation is proposed to overcome this
roblem based on the present FEM results. The equation is particularly suited for the newly developed particle scale modeling of the heat transfer
f multiparticle systems.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The transient heat conduction during the collision between
articles is an important heat transfer mechanism in particle and
ultiphase systems, such as moving beds, fluidized beds and

neumatic conveying. Although this heat transfer mechanism
ay be neglected for dilute flow [1], it must be included for

ense flow where particles are frequently in contact with their
eighbors [2,3]. The study of this problem was pioneered by
oo [4]. He used the theory of elasticity to calculate the area and
uration of contact between particles. In his analysis, the ther-

al conductivities of particles were assumed to be very high

o that the temperature of a particle can be regarded uniform at
ny moment during a collision process. As a result, the resultant
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odel is rather limited and only applicable for particles of large
hermal conductivity. To overcome this problem, Sun and Chen
5] conducted both numerical and theoretical analysis of the
ransient heat conduction due to particle collision and proposed
n equation for the calculation of the heat exchange between
articles. In their study, the heat conduction between two parti-
les was assumed to be similar to that between two semi-infinite
edia. This semi-infinite-media assumption is valid if the con-

act area between particles is very small compared to particle
ize. However, it may not truly represent the reality if the ther-
al conductivities of particles are large. More recently, Rong

nd Horio [6] conducted a numerical study to analyze the ther-
odynamic characteristics and NOx emission of burning chars

n a fluidized bed, where the particle–particle heat conduction
s part of the model they developed. Their model involves var-
ous assumptions including the existence of gas layer between

articles which could be opened for further investigation.

In recent years, development of a more general and accu-
ate equation to calculate the heat transfer between particles
ecomes a significant issue, driven by the need to develop a

mailto:a.yu@unsw.edu.au
dx.doi.org/10.1016/j.cej.2007.08.024


J.H. Zhou et al. / Chemical Engineerin

Nomenclature

A* dimensionless contact area
Ac maximum contact area (m2)
Af contact area between two colliding particles (m2)
c specific heat (J/(kg K))
C parameter in Eq. (19a)
C′ parameter in Eq. (20)
e heat exchange given by Eq. (19a) (J)
e′ heat exchange given by Eq. (20) (J)
e0 heat exchange given by Eq. (19b) (J)
Ei elastic moduli of particle i (=1 or 2) (Pa)
E12 defined by Eq. (3) (Pa)
Fo Fourier number, α1tc/r2

c
k thermal conductivity (W/(m K))
KP stiffness matrix
mi mass of particle i (=1 or 2) (kg)
m12 defined by Eq. (4) (kg)
PM mass matrix
r radius coordinate (m)
rc maximum contact radius (m)
rf contact radius (m)
ri radius of particle i (=1 or 2) (m)
r12 defined by Eq. (2) (m)
R dimensionless radius coordinate
t time (s)
tc time corresponding to rc or Ac in a collision (s)
T temperature (◦C)
Ti1, Ti2 initial temperatures of particles 1 and 2, respec-

tively (◦C)
V velocity (m/s)
z axial coordinate (m)
Z dimensionless axial coordinate

Greeks letters
α thermal diffusivity (m2/s)
νi Poisson ratio of particle i (=1 or 2)
ρ density (kg/m3)
τ dimensionless time, defined by Eq. (5) or (11)
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t = 2.94 12 (r V )−1/5 (9)
ϕ dimensionless temperature, defined by Eq. (11)

etter description of heat transfer in particle systems and the
onnection with the newly developed simulation techniques [7].
or example, discrete particle simulation is now widely used to
tudy the particle or particle-fluid flow at a particle scale (see
8,9] for example). The technique can also be used to study the
eat transfer in such a flow system by properly incorporating the
eat transfer between particles and structural information in the
imulation, as demonstrated in recent studies [6,10–14]. Equa-
ions for heat conduction due to collision between particles are
n integrated part in such microscopic studies.
This paper presents a numerical study of the conductive heat
ransfer between colliding particles by finite element method
FEM). It shows that the applicability of the semi-infinite-media
ssumption indeed depends on not only the contact area but c
g Journal 139 (2008) 510–516 511

lso other physical parameters such as thermal diffusivity. Based
n the present results, to facilitate particle scale modeling of
eat transfer in particle systems, an equation is formulated to
alculate the heat exchange between colliding particles.

. Mathematical formulation

.1. Elastic impact according to Hertz’s theory

Consider two elastic smooth spheres of radii r1 and r2, elas-
ic moduli E1 and E2, Poisson ratios ν1 and ν2, masses m1 and

2 are moving with a relative velocity V along the line of their
enters when they collide. The two spheres are initially at differ-
nt temperatures Ti1 and Ti2, respectively. According to Hertz’s
heory of elastic collision, the change rate of the contact area Af
uring this collision is given by [15,16]

dAf

dt
=

[
(πVr12)2 − 4

5
√

π

E12

m12
A

5/2
f

]1/2

(1)

here

12 = r1r2

r1 + r2
(2)

12 = 4/3

(1 − ν2
1)/E1 + (1 − ν2

2)/E2
(3)

nd

12 = m1m2

m1 + m2
(4)

ntegrating Eq. (1) yields

=
∫ A∗

0

dx

(1 − x5/2)1/2 (5)

here τ is the dimensionless time, defined by

=
(

4E12

5m12

)2/5

(r12V )1/5t (6)

nd A* is the dimensionless contact area, defined by

∗ = Af

Ac
= r2

f

r2
c

(7)

here rf is the contact radius at time t, Ac and rc are the maximum
ontact area and the maximum contact radius, respectively. They
re related, given by Ac = πr2

c .Ac is calculated by [5,16]

c = π

(
5m12r12

2

4E12

)2/5

V 4/5 (8)

nd its corresponding time tc is given as

(
5m

)2/5
c
4E12

12

According Eq. (5), the relation between the dimensionless
ontact area and the dimensionless time can be obtained.
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.2. Heat transfer modeled by finite element method

Since the impact is collinear, an axi-symmetric coordinate
ystem is adopted. The transient heat conduction equation in an
xi-symmetrical coordinate system is

(
∂2T

∂r2 + 1

r

∂T

∂r
+ ∂2T

∂z2

)
= ρc

∂T

∂t
(10)

here k,ρ and c are the thermal conductivity, density and specific
eat, respectively. They may take different values for particles
and 2.
Non-dimensionalization of Eq. (10) is performed to over-

ome the difficulty arising from the two quite different length
cales (the contact radius is almost 1000 times smaller than the
adius of a sphere). Upon introducing the following dimension-
ess quantities

= at

r2
1

, ϕ = T − Ti1

Ti2 − Ti1
, R = r

r1
, Z = z

r1
(11)

q. (10) becomes

∂2ϕ

∂R2 + 1

R

∂ϕ

∂R
+ ∂2ϕ

∂Z2 = ∂ϕ

∂τ
(12)

In Eq. (11), α = k/ρc is the thermal diffusivity. In the present
omputation, all the boundaries are thermally insulated during
he collision process.

Since an axi-symmetric coordinate system is adopted, only
alf of the domain needs to be discretized. To capture the drastic
emperature gradient near the contact point, the mesh near the
ontact area is much denser than the other areas. The coordinate
ystem and the mesh at each time step are schematically shown
n Fig. 1. The mesh is generated automatically according to the
ontact area at each time step.

In the mesh shown in Fig. 1, the whole domain is divided into
any “small elements”. In this study, there are 833 node points

n total, involving 722 quadrilateral elements and 118 triangu-
ar elements. In each element, the temperature distribution is
pproximated in terms of its nodal values, e.g., ϕ1, ϕ2 and ϕ3 for
triangular element, through the so-called “shape functions”,
1, N2 and N3

∼= N1ϕ1 + N2ϕ2 + N3ϕ3 (13)

f using tensor notation, Eq. (13) can be expressed as

∼= Niϕi (14)

Using the above-mentioned “shape functions” Ni as the
eighted functions, the Galerkin weighted residual expression
f the dimensionless heat conduction equation in an element is

17]

∫
e

∫
Ni

[
∂2(Njϕj)

∂R2 + 1

R

∂2(Njϕj)

∂R2 + ∂2(Njϕj)

∂Z2

]
RdRdZ

=
∫

e

∫
Ni

∂(Njϕj)

∂τ
RdRdZ (15)

c
a
c
1
t
T

Fig. 1. The coordinate system and space discretization.

Applying the principle of integration by parts to the second-
erivative term, the weighted residual expression becomes

P� + PM
d�

dτ
= 0 (16)

here � is the vector of dimensionless temperature ϕ, KP is
alled “stiffness matrix” whose terms are of the form

Pij =
∫

e

∫
R

[
∂Ni

∂R

∂Nj

∂R
+ ∂Ni

∂Z

∂Nj

∂Z

]
dRdZ (17)

nd PM is called “mass matrix” whose terms take the form

Mij =
∫

e

∫
RNiNjdRdZ (18)

he “Crank-Nicolson” scheme is adopted to deal with the time
erm in Eq. (16).

Assembling individual element equations into a large system
f linear equations, and then solving the resultant equations, we
an obtain all the temperature values at all nodal points.

. Results and discussion

A FORTRAN computer code is developed based on the pre-
eding description. The code must be verified before being
pplied to calculate the heat transfer between colliding parti-

les. Consider a cylinder with a radius of 0.3 m and a length of
.0 m. Initially, it is uniformly at the temperature of 30 ◦C. From
ime t > 0, it is subjected to convective cooling at all surfaces.
he thermal properties of the cylinder are as follows: density
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ig. 2. The cylindrical coordinate system and the mesh arrangement adopted
or the case for validity test.

= 9257.0 kg/m3, thermal conductivity k = 40.5 W/(m K), spe-
ific heat c = 70.5 J/(kg K). The convection coefficient and the
uid temperature at the cylinder surfaces are h = 232 W/(m2 K)
nd Tf = 1300 ◦C, respectively. Fig. 2 shows the cylindrical
oordinate system and the mesh arrangement adopted in the
alculation. In this figure, the numbers indicate the
nite elements, and the numbers 1, 2, . . . represent the nodes.
o test the robustness of the FEM computer code, the solu-

ion region is intentionally discretized into quadrilateral and
riangular elements. Fig. 3 shows the calculated temperature
s a function of time at the cylinder center. For comparison,
he analytical solution for the above-mentioned test problem is
lso plotted in this figure. It can be seen that the calculated
esults agree very well with the analytical solution given in
18].

In the following, the FEM model proposed will be used to
tudy the transient heat conduction between colliding parti-
les. Unless otherwise stated, simulation parameters used are
s follows: particle density ρ1 = ρ2 = 1451.7 kg/m3, Young’s
odulus E1 = E2 = 193 GPa, Poisson ratio ν1 = ν2 = 0.29, par-

icle radii r1 = 2 mm and r2 = 3 mm, normal relative velocity
◦ ◦
= 0.5 m/s, initial temperatures Ti1 = 20 C, Ti2 = 90 C. Differ-

nt temperatures can be used, but they will not affect the final
utcomes of this study because all the physical quantities are
on-dimensionalized.

ig. 3. Comparison of the temperature transients at the cylinder center between
he FEM numerical results and the analytical solution [18].
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ig. 4. Variation of temperature with time at four typical locations. The max-
mum contact radius is 41.30 �m, and the total contact time is 8.36 �s for this
ase.

Fig. 4 shows the temperature variations with time at four typ-
cal positions. Positions 1 and 2 are near the contact area (the
istance between position 1 (or position 2) and the contact sur-
ace is 12 �m) whereas positions 3 and 4 are located at the centers
f the two particles. It can be seen that temperature variation is
onfined in a small region around the contact area. This is further
onfirmed by Fig. 5 which shows the temperature distribution
t the half time during one collision. Only the temperature dis-
ribution in the vicinity of the contact area is shown since the
emperatures at the particle centers are almost unchanged after
ne collision. This is expected since the heat exchange after one
ingle collision is very small (in the order of 10−6 J).

Sun and Chen [5] derived an analytical equation to calcu-
ate the heat exchange (e) between colliding spheres based on
he well established “semi-infinite-media assumption”. Their
quation is given by

= Ce0 (19a)

nd

0 = 0.87(T2 − T1)πr2
c t

1/2
c

(ρ1c1k1)−1/2 + (ρ2c2k2)−1/2 (19b)

here parameter C can be determined graphically as given by
un and Chen [5].

Fig. 6 shows the comparison of the calculated heat exchange
btained by the present FEM simulation. It can be seen that the
esults obtained by the present FEM simulation agree well with
hose obtained by Sun and Chen for the cases of small Fourier
umber Fo. However, when the Fourier number is high, the ana-
ytical model proposed by Sun and Chen will overestimate the
eat exchange. Clearly, the reason for this stems from their semi-
nfinite-media assumption. Another deficiency of their approach
s that graphic solution has to be used for C, which is not con-
enient for numerical calculation for a particle system which

ften involves many simultaneous collisions between particles
nd various heat transfer mechanisms [2,6,13,19]. The conduc-
ion due to the collision between particles is one of the heat
ransfer mechanisms that should also be considered properly in
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between colliding particles. Moreover, the collision mechanics,
which may involve particles of different mechanical properties,
ig. 5. Temperature distribution in the vicinity of contact area at the half time d

rder to describe the heat transfer comprehensively. Therefore,
here is a need to modify their equation. This can be achieved
ased on the present FEM results.

Fig. 7 shows the plot of the ratio between the heat exchange
′ obtained by the present FEM simulation and e0 given by Eq.
19). It can be seen that e′/e0 increases with the increase of Fo
umber or ρ1c1/ρ2c2 ratio. By fitting the FEM results, a modified
quation has been formulated to calculate the heat exchange
uring particle collision, given by

′ = C′(T2 − T1)πr2
c t

1/2
c

(ρ1c1k1)−1/2 + (ρ2c2k2)−1/2 (20)

here coefficient C′ is computed by

′ =
0.435

(√
C2

2 − 4C1(C3 − Fo) − C2

)

C1
(21)
nd

1 = −2.300

(
ρ1c1

ρ2c2

)2

+ 8.909

(
ρ1c1

ρ2c2

)
− 4.235 (22a)

ig. 6. Heat exchange as a function of Fourier number Fo for different ρ1c1/ρ2c2

atios.

c
(

F
r

one collision: (a) in the whole region and (b) in the vicinity of the contact area.

2 = 8.169

(
ρ1c1

ρ2c2

)2

− 33.770

(
ρ1c1

ρ2c2

)
+ 24.885 (22b)

3 = −5.758

(
ρ1c1

ρ2c2

)2

+ 24.464

(
ρ1c1

ρ2c2

)
− 20.511 (22c)

Fig. 8 shows the comparison between the FEM results and
hose obtained by the modified equation. It is evident that
he error arising from the semi-infinite-media assumption, as
bserved in Fig. 4, can be eliminated with this modified equation.

Eq. (20) is formulated for the case k1 = k2. Strictly speaking,
t is only applicable to the conditions specified. On the other
and, it is noticed that this equation is just a modified equation
erived from the semi-infinite-media theory which has taken
nto account the effects of variables such as particle density,
hermal capacity and conductivity, and temperature difference
an be taken into account with the Hertz theory. Therefore, Eq.
20) may be used more generally, e.g. for smooth spherical par-

ig. 7. Heat exchange ratio e′/e0 as a function of Fourier number and ρ1c1/ρ2c2

atio.
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1 = k2.

icles for Fourier number up to 10 as used in the present FEM
tudy. To test its applicability, the FEM method has been used

o calculate the heat exchange during particle collision when
he two particles have different thermal conductivities or other
hysical properties. Fig. 9 shows the results for different thermal
onductivity ratios. They show that the heat exchange increases

ig. 9. Comparison between the results by Eq. (20) and the FEM results for

1 �= k2: (a) k1/k2 = 0.1; and (b) k1/k2 = 0.01.
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ith the increase of the Fourier number and ρ1c1/ρ2c2, but its
ariation rate decreases as k1/k2 decreases. Eq. (20) can describe
he behaviour reasonably, although it overestimates the heat flex
hen the difference in thermal conductivity is very significant,

s seen from this figure. Thus, it can be used as a first approxi-
ation in engineering application. To be more accurate, Eq. (21)

hould be reformulated based on the data generated by the FEM
pproach which is much more general in nature. In this connec-
ion, further work has been planned to extend the approach to
onsider the effects of other variables such as the roughness of
article surface and the existence of gas layer near contact point.

. Conclusions

Finite element method has been used to simulate the transient
eat conduction between colliding spheres of different temper-
tures. The transient temperature distribution in a particle and
he overall heat exchange are obtained. It is confirmed that the
ariation of temperature is confined in the vicinity of contact
rea. The results show that the applicability of the semi-infinite-
edia assumption, as used by Sun and Chen [5], mainly depends

n the Fourier number. When the Fourier number is small, the
emi-infinite-media model can give satisfactory prediction. But
hen the Fourier number is high, this model will overesti-
ate the heat exchange. Another deficiency of their approach

s that the graphic solution rather than a full analytical equation
as provided, which is not suitable for implementation in dis-

rete particle simulation. Based on the FEM results, a modified
quation has been proposed to overcome this deficiency. The
roposed FEM approach and the modified equation should be
seful in the microscopic study of the heat transfer in particle
ystems involving smooth spherical particles with temperature-
ndependent thermal properties. In fact, in connection with the
revious efforts [2,6,10,13], the modified equation, together with
ther equations to count for other heat transfer mechanisms, has
een incorporated in our discrete particle simulation of coupled
uid and heat transfer in fluidized beds [19]. Efforts are currently
eing made to extend the present model to a nonlinear finite ele-
ent method such that the heat conduction between two rough

articles with temperature-dependent thermal properties can be
imulated.
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